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Abstract
Experiments were conducted to measure the unsteady plunging forces 
on a NACA- 0012 airfoil at zero undisturbed flow velocity. The aim is 
to investigate the vari- ation of the added forces associated with high 
oscillation frequencies at various angles of attack. Data of the measured 
forces are presented and compared with the predicted forces from 
potential flow approximations. The results show a signifi- cant departure 
from those estimates particularly at high frequencies. The results show 
that the measured added forces varies in a cubic manner with the 
frequency of oscillations. These results were revealed to be different 
in its formulation com- pared to the formulation using Stokes flow. The 
measured forces were proposed to be a function of the local acceleration 
and drag forces that is function of the square of the wing section velocity. 

I. INTRODUCTION
The concept of added mass was proposed by Friedrich 

Bessel in 1828 to explain differences between the periods 
[Stokes (1851)]. In his quest to explain the period of 
oscillations of a pendulum when submerged in fluids 
and vacuum. He concluded that the inertial mass of the 
pendulum must be increased to account for the increase in 
kinetic energy of the fluid around it. For a pendulum with a 
spherical shape attached to a thin wire, the added mass was 
found to be one half of the displaced fluid mass.

Inviscid potential flow analysis around a sphere 
accelerating in an otherwise stationary fluid reveals that the 
force on the sphere is totally due to the pressure

gradient on the surface of the sphere that balances the 
local acceleration ρ ∂ →−V /∂ t

and the pressure gradient that balances the convective 
term (non linear) accelera- tion V • 5−V produces zero 
forces. Inviscid potential flow theory is usually used

to predict the added mass tensor for accelerating 
bodies by considering the rate

 of change of the kinetic energy of the surrounding 
fluid [Newman (1977)]. Ac- cording to that theory, a non 
lifting surface deeply submerged in fluids and in steady 
motion experiences zero net force, whereas a body flying 
steadily near or intersecting a free surface experiences 
a wave drag. In conclusion, if the viscosity effects are 
ignored, the fluid force on a body in oscillating motion 

is solely due to the rate of change of the kinetic of the 
surrounding fluid.

Fluid viscosity significantly influences the fluid force 
on a body in unsteady motion not only because of the rate 
of change of the fluid kinetic energy but also because it 
modifies the time dependent pressure gradient on the 
body, shear stress, flow separation and vortex shedding. 
For the present configuration, we use the airfoil chord as a 
reference length, haω as a reference velocity and 1/ω as a 
reference time. By writing the non dimensional momentum 
equation,

Where λ 2 = ω c2/µ and Re = ω hac/µ are the non-
dimensional frequency and then Reynolds number, 
respectively.

The fluid flow on oscillating spheres and related 
geometry such as ellipsoids and discs are well documented 
for stokes flow (Re → 0). For example, Lawrence and 
Weinbaum (1988) predict the force on an ellipsoid in 
longitudinal oscillation. If the velocity of the ellipsoid 
center is U cos(ωt), then the approximation of the force is:
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Where Fs is stokes drag which is function of relative 
velocity, B is the Basset force which corresponds to the 
flow memory and (F − B) is a shape correction factor for 
spheroids.

To be concise, the added mass term could be 
produced using a potential flow formulation from the 
local acceleration term as well as could be evolved from 
Stoksian flow using the local acceleration term while 
considering the viscous shear wall forces. For the case of 
airfoil with sharp trailing edge and rounded leading edge, 
the vortex shedding from those edges might contribute 
to the total unsteady forces associated with the airfoil 
motion and dominated by increasing the frequency of 
oscillations.

On the other hand, fluid viscosity significantly 
influences the fluid force on a body in unsteady motion 
not only because of the rate of change of the fluid 
kinetic energy but also because it modifies the time 
dependent pressure gradient on the body and other 
forces due to shear stress, flow separation and vortex 
shedding. In classical unsteady aerodynamic problems, 
the forces are usually split into those due to the relative 
acceleration between a moving body immersed in a 
fluid and circulatory forces induced by the vortical 
structure interaction associated with the wake 
[Theodorsen (1935); Kussner (1936); Von Karman 
(1938)]. Yet, such a separation is not very clear in 
some applications.  For instance, an oscillating airfoil 
in still air may generate its own flow patterns. As such, 
additional forces are not related to added mass forces 
only but to forces generated by the vortex shedding and 
flow separation.

Chen et al. (1976) derived a closed-form solution for 
the added mass and damping coefficient on a cylindrical 
rod vibrating in a viscous fluid contained in a fixed 
cylindrical shell. They also performed experimental 
measurements. Their analytical and experimental 
results for the added mass coefficient and damping 
ratio were found to be in good agreement. However, 
their linear theory was based on the assumption that the 
vibration amplitude is small. Brennen (1982) reviewed 
the state of knowledge, at that time, concerning the 
evaluation of the forces im- posed by a body in a fluid 
due to acceleration of either the body or the fluid. He 
suggested that the added mass for a body of complex 
geometry might be estimated for each direction of 
acceleration from the principal dimensions of the 
projected area in that direction and a corresponding 
approximate equation. Lissaman and Brown (1993) 
studied the added mass effects on flight dynamics of 
parafoils. The authors concluded that, for reduced 
frequency 0.3 ≤ k (π f c/U∞) ≤ 0.4, the effect of vorticity 
is to cancel the apparent mass effect, which reduces the 

rate of change of static lift with the angle of attack. 
They proposed a constant (C) as an alleviat- ing factor 
for the relative frequency of motion in case that it is not 
considered in the theoretical unsteady CL˙α term.

Yadykin et al. (2003) performed a three-dimensional 
analysis for calculating the added mass of a cantilever 
plate undergoing first-mode vibrations. Their ap- proach 
assumes a spanwise half-sine fundamental mode and 
a single natural mode in the chordwise direction. The 
thin airfoil theory was used to calculate the forces. Their 
main findings are: (a) the nondimensional added mass is 
a function of the plate’s aspect ratio and the order of the 
natural modes of vibration, (b) the increase of the order 
of the chordwise natural mode of vibration decreases the 
value of the added mass, (c) decreasing the aspect ratio 
leads to a decrease of the added mass and attenuates the 
dependence of the added mass on the order of the chordwise 
natural mode. This dependence diminishes as the aspect 
ratio approaches 0.01. For an aspect ratio that is equal to 
one, the results obtained by a three-dimensionaltheory are 
close to those calculated by a two-dimensional one (A=∞). 
Finally, the commonly used slender-wing approximation 
for calculating the added mass tendsto overestimate the 
results for aspect ratios higher than ≈0.7 and underestimates 
these values for lower aspect ratio plates vibrating at the 
fundamental mode.

Granlund and Simpson (2007) showed experimentally 
that the added mass is linearly dependent on the plunging 
velocity of a three-dimensional ellipsoid. They supported 
their experiments by potential flow arguments. Maniaci 
and Li (2011) found that the added mass effect caused a 3.6 
% change in thrust for a rapid pitch case of a wind turbine 
blade and a change in the amplitude and phase of the 
thrust for a case with 30o of yaw. Granlund et al. (2014) 
performed experiments in a wa- ter tunnel to study the 
nonlinearity effects of leading and trailing vortex interac- 
tions on two cascaded plunging plates. Their results show 
a quadratic relation for the normalized added mass force 
with the oscillation frequency at low plunging speeds. In 
addition, they observed an optimum spacing between the 
two plunging wings in which the nonlinear interactions 
takes place.

The current literature does not include a discussion 
of the unsteady forces for airfoils oscillating at high 
frequencies as well as high angles of attack in still air. 
The major challenge that needs to be addressed is the 
contribution to the total forces by the added mass and the 
unsteady forces.  In this effort, we performed experiments 
to measure the aerodynamic loads on an airfoil undergoing 
plunging oscillations over a frequency range between 18 
and 100 rad/s and with angles of attack up to 50 degrees.  
We estimated the added forces by subtracting the inertial 
loads from the total measured forces and compared to 
the potential flow approximations.  This allowed us to 
determine the contribution of the unsteady forces.

II. POTENTIAL FLOW PREDICTION
When an airfoil undergoes oscillations in a fluid, 
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additional pressure forces are required to accelerate the 
fluid in its vicinity. These forces, which are referred to as the 
added mass effect, are functions of the local accelerations 
of the moving body. Based on Theodorsen’s theory 
[Theodorsen (1935)], the total unsteady force calculated on 
a thin airfoil with a chord length b undergoing a plunging 
and pitching motion at small angles of attack is given by:

Since we are interested in plunging motion only with 
no free stream velocity (V=0), the expression for the non 
circulatory added force can be written as:

Theodosen’s formulation for the added mass force 
given in eq. 4 does not account for the angle of attack 
dependency as it is valid at low angles. In order to account 
for the angle of attack dependence, we apply Kochin and 
Roze (1964) formulation considering the two-dimensional 
unsteady potential flow induced by an unsteady motion of 
an elliptic cylinder in a quiescent fluid as shown in Figure 
1. Writing the instantaneous velocity of the cylinder center 

Where x and y are the Cartesian coordinates along 
the major and minor axes of the ellipse, respectively, Γ 
is the circulation around the cylinder and a and b are the 
semi major and minor axes. Next, we consider an elliptic 
cylinder whose major axis is inclined at an angle α with 
the horizontal (defined here as an angle of attack) and its 
center moves vertically with a velocity W (t) as shown in 
Figure 2.

Fig. 1: Elliptical cylinder moving in quiescent fluid
Assuming that the circulation around the cylinder is 

zero, (Γ = 0), the vertical and horizontal components of the 
aerodynamic force are given by:

Considering that the plunging force is the vertical 
component of the force and

Fig. 2: Vertical and horizontal aerodynamic forces acting on a 
two-dimensional ellipse assuming the case of a flat plate (b → 
0), we obtain a plunging force of the form:

The non-circulatory lift associated with a plunging flat 
plat can then be written as:

The theoretical prediction matches with the 
geometrically unsteady potential flow model developed by 
Yan et al. (2014) for airfoils undergoing large amplitude 
ma- neuvers. The issue with the potential flow assumption 
when it comes to prediction of the added forces is the 
neglection of other unsteady forces that contributes to the 
total produced forces by the fluid due to viscous effects. 
The basic definition of the added mass is the force required 
to accelerate the body in a fluid. In viscous quiescent flow, 
the acceleration of the body may create flow patterns in the 
vicin- ity of the body that affect the pressure distribution 
and consequently contribute to additional unsteady forces 
associated with the motion.

III. EXPERIMENTAL TESTING
Experiments were conducted at Virginia Tech in 

Aerospace and Ocean Engi- neering department. The test 
rig described Previously by Zakaria et al. (2015a,b,c) was 
used in these experiments. The wing section profile is 
NACA-0012 and has a chord length of 0.14 m and span of 
0.63 m and is shown in Figure 10 (a). Figure 3(b) shows 
a schematic of the imposed motion during the tests. End 
plates were attached to the wing tip to reduce the three 
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dimensional flow effects. Figure 4 shows the used devices 
for measuring acceleration and angles during experi- 
ments. Two MEMS accelerometers were placed on the 
bracket that held the wing and connected to the main 
oscillatory rod. The low frequency motion exhibited slight 
jitter that disappeared as the frequency was increased.  In 
all performed experiments, the maximum displacement of 
the plunge motion was maintained constant at a value of 
ho = 2ha=0.0193 m which corresponds to non dimensional 
amplitude based on the chord of ha/c=7%. The geometric 
reduced frequency was calculated to be k = ho/c=0.137.  
The weight breakdown for the whole test rig is shown in 
Table 1 and the moving mass contributing to the inertial 

Table  1: Mass breakdown for the whole setup.

Device Mass (grams)

Driving motor 1355

Bracket 1005

Base 1240

Push-rods (moving) 139

Wing (moving) 235

End plates (moving) 103

Net mass 4077

force was calculated to be 0.477kg ± 1grams.
The acceleration of the wing was measured using 

a single axis miniature ac- celerometer of mass 0.5 gm 
and sensitivity of ±15% at 10 mV /g. The accelerom- eter 
was calibrated using a 2 MH z variable phase synthesizer 
apparatus over a broad range frequencies. The operating 
angle of attack for the wing was measured using a digital 
protractor with an accuracy of ± 0.2 degree. The force 
measure- ments were obtained by using a strut mount 
balance (6-component) and the data was acquired using 
National Instruments SCXI-1520 system sampled at 2500 
H z. A low-pass fourth order butter-worth filter with a cut-
off frequency of 55 H z was

(a) Airfoil model setup and 
driving mecha- nism

(b) Wing  plunging motion 
nism schematic diagram

Fig. 3: Plunge-Pitch apparatus and kinematics.

(a) Inclinometer for measuring 
angles

(b) MEMS acceleometer 
for measuring acceleration

Fig. 4: Measuring devices used in experiments.

used. In order to ensure that the forcing frequencies 
were far away from the eigen- frequency of the strut 
mount, a mechanical strike-test was performed, whereby 
we tapped the strut with a rubber hammer and recorded 
the data. The frequency revealed a natural frequency of 
361 rad/s, which is well above the highest fre- quency of 
100 rad/s in our experiments. Another additional effect 
that should be considered is the fact that the entire span 
of the wing does not exhibit a uniform motion while 
oscillating leading to an error caused by slight deflections 
of the wing tips. For this purpose, we measured the tip 
deflection by using a high-speed camera that operated at 
1000 f ps. Using image boundary detection technique, 
we determined the maximum tip deflection based on 
two extreme plunging positions at a maximum operating 
at a frequency of 0.0544 ha. The wing loading and the 
maximum tip deflection captured from the CCD camera in 

Fig. 5: High-speed photogrammetry image of the wing showing 
maximum tip deflection during an oscillating frequency 
experiments of 100 rad/s.

air are shown in Figure 5.
In our experiments, the plunging motion had the form:

The maximum translation velocity of the plunging 
airfoil is written as Ure f = 2π f ha and used as the reference 
velocity. We also use the non-dimensional which can be 
written as:
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Where ω is the oscillation frequency, c is the chord 
length and µ is the kinematic viscosity. Based on eq. 13, 
the plunging velocity and acceleration are respectively 
given by:

The theoretical plunging force obtained by 
accounting for both inertia and added mass of the wing 
is then given by:

Assuming that the measured forces is a function of the 
frequency and amplitude of the oscillations and the angle 
of attack, we write the more general expression

the last term in eq. 18 accounts for the unsteady added 
forces that will be obtained from the measured values. We 
defined the added force as:

|Fadded | = |N pmeasured | − mmoving ω 2ha  (19)

IV. RESULTS AND DISCUSSION
Figure 6 shows the added force as calculated by using 

equation 19 for different plunging frequencies and various 
angles of attack. The error bars for each data point is 
based on 95% level of confidence for fifty cycles averaged 
ensemble from a total record length of ten seconds.  The 
plot also shows theoretical estimates of the added mass 
from potential flow predictions for 0 and 50 degrees 
angles of attack. The significant departure from potential 
flow estimates raises a question about the origin of these 
added forces associated with the motion. This departure 
from the potential flow prediction is most likely related 
to the viscous effects which results in a flow separation 
and formation of vorticies around the leading and trailing 
edges. These effects induce additional unsteady forces.

Figure 7, shows curve fits for the added forces with 
the frequency of oscilla- tions at different angles of 
attack. Because of the lack of measurements at very low 
frequencies, there is a significant difference in the slope 
and intercept of these curves near zero frequency. However, 
the cubic curve fit seems to represent well the variation of 
these added forces with operating plunging frequency.

Next, we postulate that the curve fit for the total added 
force coefficient Ca = 2 Fa/ρ π b `h¨ should approach its 
theoretical value of cos2 α as ω → 0 based on theoretical 
predictions. A linear curve fit of the measured added mass 
as defined by eq. 19, is then written as:

Figure 8 shows linear curve fits of t he added force 
coefficients as a function of the oscillation frequency 
for different angles of attack. Although the data show 
significant scatter, there is clear evidence that the added 
forces increases as the frequency of the oscillation is 
increased. Figure 9 shows a comparison of the fitted curves 
based on eq. 19 for all angles of attack. The results show 
that the added force values at 10, 20 and 30 degrees are 
comparable and larger than the values obtained for the case 
of zero angle of attack. On the other hand, the added

Mass values for the 40 and 50 degrees angle of attack 
are smaller than the one obtained for zero angle of attack. 
These observations lead to the notion that flow separation 
from the leading and trailing edges, expected to be more 
significant at the 10 and 20 degrees than at 40 and 50 

 

Fig. 6: Estimates of the measured and theoretically predicted 
added forces for different angular frequencies and angles of 
attack.

degrees, is contributing to the added unsteady forces as 
represented and calculated here.  From the results below 
and recalling eq. 20, one can write a hypothesis for the total 
forces experienced by the wing section after excluding the 
inertial forces as:

Ff luid = −C1h¨ − C2|h˙ |h˙ + Shape correct ion (21)

Where C1 is the coefficient of the added mass force 
as function of the local ac- celeration of the body and 
C2 is the coefficient of drag forces as function of the 
square of plunging velocity. It should be noted that the 
shape correction factor for an airfoil might be a function 
of the oscillation frequency as well as the lead- ing and 
trailing edge geometry of the airfoil which needs more 
investigations to have an appropriate functional form 
such as the form presented by Lawrence and Weinbaum 
(1988).

III. HIGHER ORDER  SPECTRAL ANALYSIS
One of the very powerful tools to identify the presence 

A
dded force (N

)
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Fig. 7: Apparent mass force at different operating angular frequencies and angles of attack

of nonlinearities in the system is the higher-order spectral 
analysis (HOS) [Nayfeh and Balachandran (1995)]. HOS 
are based on the Fourier transforms of higher-order moment 
func- tions, which can be used to obtain more information 
about the harmonics gener-ated by nonlinear couplings 
[Hajj et al. (1997)]. The power spectrum is obtained from 
the Fourier transform of the second-order correlation. The 
Fourier transform of a time series x(t) is given by:

Fig. 8: Measured apparent mass coefficient at different operating frequencies and angles of attack.

Where f denotes the frequency and X ( f ) is a complex 
quantity. The power spectrum (Sxx) is the Fourier transform 
of the second-order correlation given by:
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Fig 9: Plunging force with frequency at different operating 
angular frequencies and angles of attack

Where f denotes the frequency and X ( f ) is a complex 
quantity.

The power spectrum (Sxx) is the Fourier transform of 
the second-order correlation given by:

Where X ( f ) is the Fourier transform, the superscript (*) 
denotes complex conju- gate and E is the expected value, 
which is calculated by the arithmetic average estimator 
for M sets of data records [Kim and Powers (1979)]. The 
information embedded in a power spectrum represents the 
distribution of energy at different frequencies, which fully 
characterizes a linear system in the frequency domain. The 
normalized value of the cross-power spectrum captures 
the phase relation at the same frequency between two 
different signals. However, for a nonlinear system, higher-
order spectrum analysis is needed because the power 
spectrum cannot portray the energy relation between the 
various frequency components which is a typical feature of 
nonlinear systems.

In nonlinear systems, the frequencies can combine 
with themselves to create new components at their 
sum or difference frequency. When the frequencies are 
interacting, the phase of the new component is related to 
the phases of the primary interacting modes, therefore by 
inspecting the phase relation it is possible to iden- tify any 
nonlinear coupling [Hajj and Beran (2008)]. The detection 
of quadratic nonlinear couplings among frequency modes 
relies on the fact that the interaction of two frequency 

Fig. 10: Vector representation of N estimates of bispectrum, 
where

components ( f1 and f2) and their sum components ( f1 + 
f2) leads to significant values of bispectrum. If the system 
has a quadratic nonlinearity, the complex bispectrum 
results exhibits a phase relation as showed in Figure 10.

The auto-bispectrum is obtained from the Fourier 
transform of third-order cor- relation and can be estimated 
as:

The auto-bispectrum is usually normalized with respect 
to the amplitudes of the individual spectral components to 
yield the auto-bicoherence.
Based on the Schwartz inequality, the auto-bicoherence 
defined as:

Is bounded by 0 and one (i.e.  0 < b2 ( f1, f j ) < 1).  If 
b2 ( f1, f j ) = 1, then the pair of frequency components at 
f1  and f j , as well as their sum f1 + f j , are quadratically 
coupled. If b2 ( f1, f j ) = 0, frequency components are 
not coupled, and partially coupled if 0 < b2 ( f1, f j ) < 
1. To understand the HOS results, one should analyze 
the bicoherence in a two-dimensional plot of the cut-off 
planes, which have a range between 0 and 1. Figure 11(a) 
shows the bicoherence plot. The frequencies f1  and f2  can 
be related in four ways: (i) f1 + f2, (ii) f1 − f2, (iii) − f1 
+ f2 and (iv) − f1 − f2, which are presented in the four 
quadrants. Those
regions can be divided into eight parts using two dashed lines ( 
f1 + f2 = 0 and
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Fig. 11: (a) Bicoherence computation and its symmetry properties. 
(b) Countour plot to identify the nonlinear quadratic couplings.

Fig. 12: 3D Power spectral density for the plunging force and the operating acceleration.

We note the appearance of super harmonics in all cases 
for different angles of attack with small amplitudes, which 
indicates the presence of nonlinearities in the system.

5.1. Auto Bicoherence analysis
Figures 13 shows the auto-bicoherence for the case of the 
airfoil set at 20 degrees AoA and plunging frequency of 
13.75 H z.
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Fig. 13: Auto-bicoherence of the force at 13.75 H z and 20 degrees angle of attack.

Fig. 14:  Auto bicoherence analysis for the plunging force and operating acceleration at various angles of attack.
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The plot shows peaks are centered at ( f0, f0) and at ( f0, 
2 f0), which indicates that the force contains components 
at twice, trice and four times the forcing fre- quency. This 
indicates that the force is proportional to terms other than 
the accel- erations.

Figure 14 shows the auto bi-coherence plots for two 
different forcing frequen- cies, 8.75 H z and 13.75 H z and 
various preset angles of attack. The results show that the 
acceleration signal does not exhibit any nonlinear coupling, 
which indi- cates that it consists of a single frequency. On 
the other hand, the auto-bicoherence plots of the measured 
forces exhibit coupling between the forced frequency 
and its harmonic. The highest levels of these couplings 
is over the range between 10o and 30o.  This should be 
considered in concert with the results presented above that 
showed larger forces at these angles of attack. That is the 
contributions of the unsteady forces is the highest over this 
range of angles of attack.

5.2. Cross bicoherence analysis
The results shown in this subsection are for specific 

cases and aim to show the nonlinear dependence on the 
added force and the acceleration. Figures 15, 17 and 19 
show the power spectral density and linear coherence for 

Fig. 15: PSD for added forces and plunging acceleration and their linear bicoherence at 0◦

Fig. 16: Auto and cross bicoherence at 0◦ AoA

the added force and acceleration at 0◦, 20◦ and 50◦ angles of 
attack. These results are followed by re- sults for the same 
angles at the same selected frequency representing the auto 
and cross bicoherence shown in Figures. 16, 18 and 20. 
In Figure 15, the results show a linear coherence of 0.74 
for the added force with the plunging acceleration atthe 
operating frequency for zero angle of attack. However, at 
20◦ the linear coher- ence is increased to 0.87 and increased 
again to reach 0.95 for 50◦ AoA. Figure 16 shows the cross 
bispectral analysis for 0o angle of attack at an operating 
frequency of 13.5 H z and a cutoff ratio is 0.93. It is clear 
that only the auto bispectral anal- ysis for the added force 
shows coupling with the subharmonics of the signal and 
concentrating around an operating frequency of 13.5 H z. 
At higher angle of attack (20o), as shown in Figure 18, we 
observe two high contours. The first is at 27.08 H z and 13.5 
H z, and the second is 41.66 H z and 28.1 H z, respectively. 
These high contours show the nonlinear quadratic coupling 
between the added force and the acceleration that results 
from the interaction between the sub-harmonics ( fo,2 
fo) and (3 fo, 2 fo). The results in Figure 20 show weak 
coupling between the added force and the acceleration at 
(5 fo, 4 fo).
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Fig 17: PSD for added forces and plunging acceleration and their linear bicoherence at 20◦ AoA.

Fig. 18: Auto and cross bicoherence at 20◦ AoA.

Fig. 19: PSD for added forces and plunging acceleration and their linear bicoherence at 50◦bAoA.
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Fig. 20: Auto and cross bicoherence at 50◦ AoA.

VI. FLOW VISUALIZATION
In order to provide a physical insight of flow in such case 

(oscillating airfoil in stationary flow), flow visualizations 
were performed by seeding ceramic particles in a water 
channel facility having a test chamber sectional area of 58 
cm width and 83 cm height. The same test rig was used as 
well as the same wing after painting the wing with a black 
matte color to prevent laser reflections. The mechanism 
was hanged upside down above the test section as shown 
in Figure. 21 The maximum.

Fig. 21: Test section and motion apparatus mounted above the 
test section of the horizontal free surface water tunnel.

Operating plunging frequency was 0.4 Hz in 
water which corresponds to 20 Hz in air based on the 
nondimensional frequency parameter f c2/ν (see eq.14). 
The mounted scheme resulting in approximately 0.05c 
model tip deflection from the hydrodynamic loading at 
the maximum operating frequency (2 H z), however the 
deflection was found to be negligible at the half span 
location where the visual- ization takes place.

Figure 22 shows the wing section immersed in the water 
channel and the flow visualization regions of interest. The 
laser sheet lightening the lower side with the prescribed 
regions of interest (leading and trailing edges). A shadow 
appears on the upper side of the wing and a remedy for 
that is we put a square mirror on the upper side of the free 
surface to enhance the particle illumination specially at the 
leading edge region. The operating frequency was captured 
using a laser tachome- ter to count the plunge oscillations 

Fig. 22: Plunge mechanism placed in the test chamber with the laser sheet 
illuminates the upper surface of the airfoil and region of interest to capture 
the insight flow.
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that reflected from a patch bonded on the wing tip. Figures 
23, 24, 25, 26 show a sequence of images recorded at 0◦, 
10◦, 20◦ and 30◦ angles of attack for 34/ of full stroke 
period. The trailing edge region was taken to be the region 
of interest for 0◦ and 10◦ as there is no evidence for any 
flow changes at the leading edge region. In Figure 23 (a), 
the wing is at its highest position creating a strong TEV 
in a clockwise direction. In (b) and (c), the wing start to 
move downwards results in decreasing the TEV strength 
generated in the previous time instant and start to generate 
another counter rotating vortex (coun- terclockwise) while 
being shed away from the trailing edge. In (d), (e) and 
(f), the asymmetric wake behind the airfoil was observed.  

Fig. 23: Flow visualization of one period for the NACA-0012 
captured for the trailing edge at αo =0◦ and plunging frequency 
0.4 Hz.

Fig. 24: Flow visualization of one period for the NACA-0012 
captured for the trailing edge at αo =10◦ and plunging frequency 
0.4 Hz.

The formed vortex structure called the mushroom type 
observed in flow visualization of a purly heaving foils in 
a free stream by Rival and Tropea (2010). However the 
mechanism is different from the vortex structure observed 
by Rival et al., where the observed one here is genesis 
from the trailing edge only due to the high frequency of the 
plunging airfoil as well as the slow excursion of the formed 

Fig. 25: Flow visualization of one period for the NACA-0012 
captured for the trailing edge at αo =20◦ and plunging frequency 
0.4 Hz.

Fig. 26: Flow visualization of one period for the NACA-0012 
captured for the trailing edge at αo =30◦ and plunging frequency 
0.4 Hz.

VII. CONCLUSIONS AND FUTURE 
RECOMMENDATIONS

The results presented in this work provide measured 
data of forces associated with the added mass on an airfoil 
undergoing plunging oscillations at high fre- quencies and 
high angles of attack. The results show a cubic variation 
of these forces with the frequency of the oscillations.     

vorticies constrained such for- mation. On the other hand, 
the mushroom type mechanism observed by Rival et al. is 
based on the leading edge vortex emanated from the leading 
edge and con- vected downstream to reach another TEV, 
then form such type. One should note that, the asymmetric 
pattern results in the inclined path the generated vorticies 
could be attributed to the free surface of the water channel.

Figures 25 and 26 show the two regions of interest as 
illustrated in Figure 22. The same vortex structure was 
observed as in the cases of 0◦ and 10◦. An attached LEV 
was observed of particular interest, Figure. 25 (d) and 
Figure. 26 (e). The evidence of a attached LEV formation 
as well as the shedding of a TEV contributes to the added 
forces associated with the motion.
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This variation indicates that the added mass is linearly 
dependent on this frequency. The results also show that 
the added mass is largest for angles of attack between 10 
and 20 degrees and lowest for angles of attack between 
40 and 50 degrees. The dependence of the added mass on 
the frequency of oscillations and angle of attack variation 
indicate a sig- nificant effect of the flow pattern generated 
by the oscillating airfoil and its contri- bution to the added 
mass as calculated here. The results presented by Zakaria 
et al. (2017) addressed a lift enhancement within a specific 
range of frequencies. These observations might lead to dig 
more rigorously into details of the origin for the observed 
enhanced lift. This stemmed through emphasizing that 
there is an addi- tional unsteady force contributed to the 
total lift enhancement differed from LEV contribution. 
So, one question that needs to be addressed is whether and 
how the generated unsteady loads due to the oscillatory 
motion should be separated from the added mass. More 
experiments should be done for a broad range of Reynolds 
number to explore the optimum conditions for occurring 
such phenomenon.
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