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Abstract
The need for semi-autonomous or autonomous operations, communication 
delay, short contact periods as well as the need for survival in harsh environments 
poses unique challenges to Automotive Mechanical Transmission Systems 
(AMTS). Predictive health monitoring (PHM) systems are currently gaining 
in popularity due to their effectiveness in providing robust information about 
the system condition and reducing maintenance costs. This paper presents a 
PHM system for monitoring different gear faults using vibration analysis and 
Support Vector Machine (SVM) algorithms. Experiments were conducted on 
a multi-stage gearbox (Automotive Mechanical Transmission Systems) under 
three conditions, normal, external vibrational excitation and oiling system high 
temperature. Multi-class SVM based on developing a model for normal and 
faulty states; the model used for monitoring the upcoming sensory data, and 
classifies them as normal or faulty ones. The model is verified through additional 
experimental observations. The classifier algorithm was coded in Matlab and 
showed a good potential in classifying different failure mechanisms.

I. INTRODUCTION
Monitoring the condition of the in-service mechanical 

transmission system is an important issue for reliability, 
where their components deteriorate over the time and 
affected much when subjected to varying loads. This led 
in continuous improvement of maintenance strategies from 
breakdown and periodic maintenance to Condition Based 
Maintenance (CBM) and predictive maintenance in order 
to sustain reliability and reducing the periodic maintenance 
costs. Also, in some applications there is more demanding 
aspect such as saving man's life other than reliability[1]. 
Smith[2], has defined the causes of transmission vibration 
and its transmission path, including factors such as 
manufacturing error, design error and gear tooth deflection, 
which combine to introduce a Transmission Error (TE), 
which is the primary source of the vibration.

Over the past decade, vibration analysis proved to be a 
trustworthy diagnostic technique that can provide reliable 
information. However, in the last 10 years researchers 
devoted a much effort to support CBM actions using 
vibration information[3-13].

Many Researchers focused on developing multi sensors 
fusion algorithms to fuse vibration analysis information 
with other sensory data, such as Acoustic Emission (AE) 

and oil debris analysis to minimize false alarms that may 
occur in failure prediction.

Parametric methods based on mathematical modeling 
is used to fit measured time series waveform data to a 
parametric time series model, and then extract features 
based on this model. Two models are currently in use: the 
auto regressive (AR) and auto-regressive moving average 
(ARMA) models. The advantage of mathematical modeling 
based on parametric methods over the neural networks 
model-based method is its ability to deal with time series 
data directly without the need for a signal pre-processing 
step to extract useful features that can be modeled to 
represent the system. However, they can only be used to 
model a time series signal such as a vibration signal, and 
cannot be applied to combined information from several 
techniques (vibration and AE) such as in the case of fuzzy 
logic [14 -17]. Also, other researchers devoted efforts to build 
intelligent algorithms based on vibration features including 
Expert systems, Artificial Neural Network (ANN's), 
Genetic algorithm, and fuzzy logic [18 - 29]. 

Onsy et al.[30-32] is devoting their efforts in developing 
smart CBM systems that can use one analysis technique 
only such as vibration or acoustic emission analysis along 
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with intelligent algorithms to predict the onset of failures; 
This is to reduce costs of different sensory requirements. 

The simplicity of data driven modeling approach 
is that there is no need for a fundamental model of the 
system and only data from normal operation needs to be 
used, which is generally available in some form for most 
machines. Among various clustering methods, the support 
vector machines (SVMs), are found to be effective in real-
world applications[33,34]. In addition, the SVMs possess 
some useful properties for the problems of classification 
The simplicity of data driven modeling approach is that 
there is no need for a fundamental model of the system and 
only data from normal operation needs to be used, which 
is generally available in some form for most machines. 
Among various clustering methods, the support vector 
machines (SVMs), are found to be effective in real-world 
applications[33-34]. In addition, the SVMs possess some 
useful properties for the problems of classification in 
terms of the non linearity, efficiency of computation, and 
simplicity of implementation[35]. Many applications of this 
technique have been successfully applied in other fields of 
process monitoring[36-39]. He and Shi[40] found that support 
vector machines produced better accuracy than artificial 
neural networks when applied to a pump diagnosis 
problem. 

This paper outlines the use of the Multi-Class Support 
Vector Machine SVM approach, to develop a framework 
to monitor and test the health status of a multi stage 
Mechanical transmission system.

II. SYSTEM CONFIGURATION
 An automotive mechanical transmissions gear test rig 

was developed for this on-going research figure 1. The rig 
comprises 130 mm centre distance gearbox and fixed on 
the floor using a non-vibrating platform (Fastened with 
rubber and bolts)

The system is driven by a 7.5 KW variable speed 
3-phase electric motor controlled by an inverter to provide 
a speed variation of 1750 rpm. The system is loaded 
through a mechanical braking system and controlled with 
an AC motor inverter. The system is equipped with five 
sensors, two accelerometers at two different positions 
(input and output of the gear system), temperature sensor 
(immersed in the gearbox oiling system), wireless strain 
gauge for torque measurements (on the output shaft) and 
a proximity sensor for speed measurement (at the gearbox 
input shaft). The rig can generate a load torque on the test 
gears in the range of 0 – 200 Nm. The torque is measured 
using calibrated strain gauges installed on the shaft and 
the measured torque values are transmitted to the control 
program by telemetry in order to provide torque control of 
the loading mechanism on the mechanical transmissions. 
Two temperatures were measured: gearbox oil temperature 
and bearing temperature using RTD temperature sensors 
(10mv/C). The input shaft speed and motor current were 
also monitored as a precaution. The test rig operating 
conditions were monitored and it is flexibly changed 
according to the required test conditions using LabVIEW’s 

Fig. 2: Inverter, 2. Electric motor, 3. Fixable coupling, 4. 130 
mm center distance Gearbox, 5. Mechanical coupling, 6. Loading 
Mechanism.

The Vibration analysis system incorporated a 24-bit 
NI wireless DSA data acquisition card (NI 9234 with 
cDAQ-9191) to acquire the vibration signal, speed and 
temperature. The vibration signals were acquired using two 
DJB Piezotronic constant current source accelerometers 
(model no. Acc103 -10mV/g) mounted adjacent to the 
tested gear bearings transversely to the gearbox casing, and 
a shaft speed sensor was used to acquire the shaft rotation 
reference. The sensors location diagram over the test rig 
is shown in Fig 2. The vibration signals are then acquired 
continuously and transmitted to the base unit using an 
IEEE 802.11b/g (Wi-Fi) wireless communication interface 
(frequency range 2.412–2.462 GHz). The system can send 
the data from a range up to 30 m for indoor measurements 
and 100 m for outdoor operation as long as the line of sight 
of the wireless signal is provided. The system can also 
provide Ethernet cabling measurements up to a distance 
of 100 m. 

III. SUPPORT VECTOR MACHINES 
METHODOLOGY

Support vector machines (SVMs)[34,35] are a group of 
learning machines for solving pattern recognition problems 
efficiently. SVMs try to find the hyperplane, which 
separates optimally the training patterns according to their 
classes (i.e. hyperplane with maximum boundary margin). 
This is performed by using what is commonly known in 
machine learning as the “kernel trick” when using SVM’s.  
Kernel function is chosen to map the data from its original 
space to feature space. It can be chosen arbitrarily so as to

Fig. 1: Multistage gearbox system.

virtual instrument scalable architecture features.
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best suit the data and at the same time reduce the 
computational burden involved with generating the mapped 
values by direct evaluation. “Support vectors” correspond 
to those points that lie along the margin or closest to it. 
The maximum margin between classes is found by solving 
a quadratic optimization problem. SVMs have a good 
generalization performance over traditional approaches, 
since their training is based on the principle of structural 
risk minimization (SRM) (i.e. minimizing the upper 
bound on the expected risk), while the training traditional 
approaches are based on empirical risk minimization (i.e. 
minimizing the number of the training error). SVMs have 
a high computational efficiency in terms of speed and 
accuracy. 

They are also more preferable when dealing with high 
dimensional data as they are more robust than traditional 
approaches which may over-fit the data. However, they 
still have negative-aspects in terms of giving information 
about the system output and no physical explanation and 
interpretation of the process itself. The description of 
SVMs classification can be explained as follows: 
Consider the training data {xi ,yi}, where: i=1,…., N, 
yiϵ{+1,-1} corresponding to the class of xi (yi = 1 for class 
A, yi = -1 for class B). The principle of operation of SVMs 
classifier will be modified according to the type of the data 
samples as follows:

Linearly Separable Data 
Figure 3 shows the hyper plane H which separates the 

two classes of data (separating hyper plane). This hyper-
plane H satisfies the following equality
b + wt.xi=0                                                                     (1)

Where: w is a normal vector on the hyperplane, and b 
is a bias representing the distance from the origin.

Fig. 3: Optimal separating hyperplane of SVMs for separable 
data.

The two inequalities in (2) can be combined as 
follows 

yi (b+wt.xi) ≥1                                                        (3) 

The equalities of (3) define hyperplanes H1, and 
H2 respectively, and any training data belongs to class 
A or class B and lying on H1 or H2 is called support 
vectors (SVs). From Fig. 4 the geometry and the 
separating margin of hyperplane H is given by

   

The SVMs classifier tries to find the separating 
hyperplane with the largest margin (optimal 
hyperplane). This can be formulated as follows:

And s.t. constraints in (3)
Using the Lagrangian formulation of the problem 

Lp will be minimized with respect to w, b and all 
the derivatives of Lp with respect to all the Lagrangian 
multipliers, αi will vanish. All of these multipliers are 
subjected to the following constraints: 
αi≥1                                                                                (7)

The calculations can be simplified by applying 
Karush-Kuhn-Tucker (KKT) condition which allows 
applying dual formulation of the problem. This implies 
that the maximum of Lp is subjected to same constraints 
in (7) and acquiring that the gradient of Lp with respect 
to w and b vanishes which results in (6) and (7)

Substituting (8) and (9) in (6) results in

s.t. constraints in (7) and (9). Once α is obtained 
from (10) (using a quadratic programming (QP) 
solver), the dimensions of the classifier w, b are 
determined using (3) and (8). Substituting the obtained 
values of w and b in (11) allows the classification of 
any unknown sample.
yunknown= sign (b+wt.x unknown)                                      (11) 

The number of variables in (10) is the number of 
the training data. All the training data associated with 
the Lagrangian multipliers satisfying the inequality of 
(7) are the SVs. The number of SVs is considerably 
less than the number of the training data. 

IV. RESULTS AND DISCUSSION
This section discusses the results of the experimental 

The training data corresponding to classes A and B 
satisfy the following inequalities respectively
b+wt.xi≥1      and       b+wt.xi≤-1                       (2)

The two inequalities in (2) can be combined as follows
yi (b+wt.xi) ≥1                                                        (3)

The training data corresponding to classes A and B 
satisfy the following inequalities respectively
b+wt.xi≥1      and       b+wt.xi≤-1                       (2)
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Measurements were driven through three conditions 
as shown in fig 4. shows Kurtosis, Crest factors and 
temperature of the input gearbox shaft through the different 
conditions. First, the system was run under normal 
condition (observations 1- 100), then external excitations 
were applied at one position (input shaft: 101- 200). The 
system was then subjected to a high temperature (201-300).

There are several evaluation schemes for selection of 
training and testing sets including hold-out, leave-one-out, 
cross-validation and bootstrap. In our article the selection 
is based on hold-out method. So, the 300 observations 
are divided into 225 observations as training set and 75 
observations as testing set. The division percentage                  
is 75 % for training set to 25% for testing set.

1. Nonlinear support vector machines results
In this section, the generalization of the non-linear 

SVMs classification algorithm to the gearbox state-of-
health data and its performance is investigated. The training 
technique generated in this design work is adapted to train 
225 observations (80 normal, 145 faulty) as training set 
(Set-1). Subsequently, the model is tested and validated 
on a subset (Set-T) of the remaining 75 observations 
(20normal, 55 faulty) and their corresponding normalized 
values are directly used as the input features for SVMs. 
The corresponding output y1 is (1 for a normal condition, 
2 and 3 for faulty conditions).

2. SVM models design
The SVM models are designed during the training 

process by trial and error. The training process involves 
different Kernel functions as well as several values of each 
Kernel parameters in order to obtain the SVM classifier 
with the best performance. The SVM and Kernel methods 
coded in MATLAB is used for the SVMs training and 
testing.

3. Selection of Kernel function and Kernel param-
eters

The SVMs classification technique is tested for two 
different Kernel functions during the training process 
namely, the polynomial and Gaussian Radial Basis 

Functions (RBF) kernel functions[35]. According to the 
performance of these Kernel functions, the suitability of 
the SVMs as an intelligent classifier is judged.

The selection of the optimum parameters for SVMs 
is done during the training process (Set-T). The SVM 
classifier with the best performance is obtained by 
testing different values of the Kernel parameters. These 
parameters are varied in the following manner; γ is varied 
with values of 0.1, 0.2, 0.3, 0.5, 1, 3, 5.  The order of the 
polynomial Kernel n is varied in the range with steps of 2. 
The penalty due to the error C is also varied with values 
of 1, 10, 100, 500 and 1000. The tolerance condition for 
the QP solver is 0.0000001. The performance of the two 
SVMs is assessed on each of these values by calculating 
the training percentage performance efficiency defined by:

From these results, the SVM classifier with the 
highest training percentage performance efficiency is 
selected. The testing process is then performed, during 
which the generalization performance of the classifier is 
examined using testing set (Set-T) by evaluating the testing 
percentage performance efficiency.

4. Training and testing the results
Fig. 5 shows the best performance of kernel functions 

during the training process of the training set (Set-1).The 
best performance is introduced in terms of the percentage 
training efficiency of equation(12), with respect to the 
variation of the kernel parameters γ, and n as well as the 
penalty due to the error C. The corresponding number of 
SVs and the training time are also illustrated.

Fig. 5: Best performance obtained during training of SVMs with 
for normal and faulty data and for different values of Kernel 
parameters for Gaussian and polynomial Kernel.

study, showing the application of the SVM algorithm 
to real stored sensory data, for normal and anomalous 
operation periods.

Fig. 4: Kurtosis, Crest factors and Temperature at the input 
gearbox shaft for 300 sampleas.
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From the results illustrated in Fig. 5 the following 
clarification are worth noting:

1. Effect of penalty due to the error C 
a. For the Kernel functions under investigation, the 

best performance is obtained at high values of C = 500 
and 1000. In addition, as C increases the training efficiency 
increases.

b. The maximum training efficiency is 96.98% at C= 
1000.

2. Effect of the Kernel parameters 
a. For the polynomial Kernel, as n increases, both of 

the number of SVs and the training time decrease, while 
the training efficiency increases. The best performance for 
the polynomial Kernel function is 96.13% for C = 1000, 
n = 10. 

b. For the Gaussian Kernel, as γ decreases, both of the 
number of SVs and the training efficiency increase, while 
the training time decreases. The best performance for the 
Gaussian Kernel function is 96.98% for C = 1000, γ = 0.1. 

3. Effect of the type of the kernel function
a. The best training efficiency was obtained with the 

Gaussian Kernel function (96.98% during SVM training).
b. The shortest training time was obtained for the 

polynomial Kernel function (7.4 second during SVM 
training and the smallest number of SVs was obtained for 
both the polynomial and Gaussian Kernel function (10 SVs 
during SVM training).

Figures. 6 and 7 demonstrate samples of contour plots 
for non-linear SVM classifier using Gaussian Kernel 
functions. C=1000, Gaussian, KO =2, lambda=1e-7
C=1000, Polynomial, KO =2, lambda=1e-7

Fig. 6: Non-linear Gaussian SVMs contour plots.

Fig. 7: Non-linear Polynomial SVMs contour plot.

V. CONCLUSIONS 
The study has presented a wireless vibration measuring 

system that was able to detect different conditions of gears in 
automotive gearbox and clearly classify its condition using 
one accelerometers at input of the gear system, temperature 
sensor (immersed in the gearbox oiling system), wireless 
strain gauge for torque measurements (on the output shaft) 
and a proximity sensor for speed measurement (at the 
gearbox input shaft)for model building and testing. The 
study has focused on monitoring the classifying of system 
faults using multiclass SVM. 

The system is being developed for use on 130mm 
automotive manual transmissions, but could be adapted 
for other transmission or machinery systems rotating 
machinery. 

The model was tested under different conditions 
including: normal condition, external vibrational 
excitations at one position (input shaft), high temperature 
and was able to successfully differentiate between them.
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