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Abstract
The heat transport equation for laminar flow between isothermal 
parallel-plate channels in the entrance region is solved numerically. The 
heat transport equation is solved using the rightward representation of 
Barakat-Clark ADE method. The proposed numerical method uses the 
two-time levels derivative to solve the unsteady term in the transport 
equation. The unsteady term presented using two-time level derivative 
at n and n+1 combined with backward derivative i and i-1. The heat 
equation contains the unsteady term and the axial heat term. The heat 
transfers within flow between two parallel plates. The results for the 
local Nusselt number, the mean temperature, and thermal entry length is 
shown. The analysis provides the temperature distribution considering 
the axial heat conduction and the downstream diffusion. The results 
show the effect of the upstream on the inlet temperature and ensure 
the reliability of the proposed numerical method to solve the transport 
equation including the unsteady term and the two-dimensional partial 
derivative.     
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1. INTRODUCTION

Gratz-Nusselt problem is a well-known problem as a 
T-problem where the flow is fully developed and uniform 
temperature at the inlet. This case exists in the heat 
exchangers of finite length with good mixing in the headers 
at the inlet and outlet.

For the fluid heating (Tw > Tfluid) where Tw is ‘’wall 
temperature’’, the effect of fluid axial conduction should 
be included in the study to avoid the error of calculations. 
While heating, part of the heat is transferred from the 
walls raising the local enthalpy, and the rest is consumed 
in heating the incoming fluid at the header's inlet                                
(-∞ ˂ x ˂ 0 ) by conduction. Preheating the upstream fluid 
affect the temperature distribution at the inlet condition 
at  x = 0, the inlet temperature will not be uniform while 
including the fluid axial conduction. So neglecting the fluid 
axial conduction may cause calculation error especially at 
low Peclet numbers.

The upstream and downstream regions of the 
flow between parallel plates are solved using a                                                                                                    
series-solution [1]. The study included fluid axial conduction. 
The solution presents a good approach long away from 
the entrance due to the difficulties in evaluating the eigen 
values. While near the entrance the solution fails (smallest 
values of axial distance). Allem’s scheme is then applied[2] 
considered the steady-state energy equation downstream 
considering the fluid axial conduction. The presented 

results deviate from Great solution[3] for X* = (x/De)/Pe ˂ 
0.0025 with deviation up to 25 %. Good agreement with 
Graetz solution for X* = (x/De)/Pe > 0.0025. The results 
of both the local bulk temperature and the local Nusselt 
number presented graphically for Pe“Peclet” numbers up 
to 106 .

The problem is solved again[4] using a closed-form 
using a Second-, Third-, and Fourth-order polynomial 
for the temperature and Nusselt number. The third-order 
polynomial presented the lowest deviation from the exact 
solution. However, the calculations at small   still very 
difficult when the fluid axial diffusion is considered. In 
1973, they presented[5] the same problem in considering the 
effects of the upstream and the downstream conditions on 
the heat transfer with the fluid axial conduction. 

The solution extended to regions (-∞ ˂ x ˂ ∞) using 
the central finite-difference[6] to solve the steady-state 
energy equation. He stated that the effect of the axial 
conduction cannot be formulated by simply adding the 
axial conduction term to the energy equation while using 
a semi-infinite duct with uniform inlet temperature. Also, 
the axial conduction effect is more pronounced in the case 
of constant wall temperature, and the axial effect may be 
neglected for Pe > 50  . The study mentioned that the fluid 
axial conduction can cause a considerable increase in the 
thermal developing length. An exact solution presented[7] 
to show the temperature distribution, the velocity profiles, 
and the local Nusselt number for slug flow and for both 
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upstream and downstream regions. The results found 
that the heat transfer characteristics are sensitive for Biot 
number and Peclet number in the thermal entrance region.

The ADI method[8] demonstrated the convergence by 
definite error and the results presented the local Nusselt 
number for X* ˂ 0.0025  [ref, table 7, 8]. Also, it presented 
the thermal entry length for Peclet number up to 1000. 
Then considered[9] the forced convection in a parallel plate 
channel filled with a saturated porous medium to present 
modified Greatz methodology considering the fluid axial 
conduction, and viscous dissipation. The solution presented 
dimensionless expressions for the local Nusselt number 
as a function of the dimensional longitudinal coordinate 
and other parameters (Darcy number, Peclet number, 
Brinkman number). A numerical study for asymmetric 
heating[10] stated that the Nusselt number is independent 
of the asymmetry if and only if the velocity profile is 
symmetric with respect to the midline of the channel. The 
axial heat conduction in parallel flow microchannel heat                        
exchanger[11] mentioned that increasing the Reynolds 
number Re and thermal conductivity K leads to an increase 
in the axial heat conduction while increasing hydraulic 
diameter Dh and channel volume leads to a decrease in the 
axial heat conduction.

The study[12] considered constant wall temperature 
considering axial conduction. The results showed that 
considering the axial conduction increases the local 
Nusselt number Nux. Considering the fluid axial conduction 
increases the heat transfers to the wall and this effect 
decreases obviously as Peclet number   increases. The axial 
effect[13] within micro-channels the local Nusselt number at 
infinity is NuToo  for constant temperature for flow between 
two parallel plates. The study presented a derived correlation 

for the Nusselt number. A mathematical approach[14] is used 
to evaluate the effect of flow maldistribution in a parallel 
plate-fin heat exchanger. Another numerical study[15] on the 
motion of a magnetorheological fluid under the application 
of a magnetic external filed in modifying the velocity 
profile and the pressure drop along the channel show good 
results. 

 The instability of pure Newtonian fluid flow between 
two parallel plates[16], where the bottom one coated with 
various porous media with permeability and porosity is 
investigated. A numerical solution[17] analyzed numerically 
the fully developed laminar flow of the Cross fluid between 
parallel plates under uniform heat flux. Fredrik and                    
Trygve [18] presented an experimental and numerical study 
for the hydrodynamic loads on two-dimensional perforated 
plates.

In this paper, the numerical solution extends the 
rightward representation of[19-20] method to present a result 
of the developed flow in the entrance region of parallel 
plates, and laminar forced convection as shown in figure 1 
and 2. The flow is fully developed, and the walls are held 
at constant temperature. The problem will be introduced 
into cases; the first one assuming uniform inlet temperature 
at X =  0  presenting the results downstream the flow, the 
second, assuming the temperature to be constant at x = -∞. 
The results will show the effect of the upstream on the inlet 
temperature at X = 0 , also the results for downstream the 
flow 0 ˂ X ˂ ∞ will be shown. The stability analysis for the 
proposed method is detailed in[20].

1. Analysis and governing equations
The heat transfer is presented as follow:

(1)

Where  ά is the “thermal diffusivity”,  is the velocity 
component, the schematic of the flow is shown in Fig. 

(2)

Where   and   are“the upstream temperature and the wall 
temperature”, respectively. 

(3)

The non-dimensional parameters are;

1.The boundary conditions are;

Where   and  are the characteristic velocity and the 
effective diameter.   is non-dimensional time X, Y are non-

dimensional locations. the heat transfer equation in non-
dimensional form is

(4)
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The fully developed flow considering ,so the parabolic 
form of the velocity is:

(5)

The local value of bulk temperature is: 

(6)

The local Nusselt number Nux is

(7)

The average value bulk temperature is:

(8)

The average value of the Nusselt number,  , is

2. The proposed Scheme
The first order of time derivative ðf / ðt and the second-

order derivatives ð2f / ðx2, ð2f / ðy2 and ð2f / ðz2 are done 
using two-time level derivative as follow: 

(9)

(10)

(11)

(12)

(13)

Also ðf / ðx, ðf / ðy and ðf / ðz using the two-time-level 
backward or forward differences as follow;

(14)

(15)

(16)

(17)

u ≥ 0

u ≤ 0

v ≥ 0

w ≥ 0

v ≤ 0

w ≤ 0

(18)

(19)

The scheme is stable under any condition[20]. No 
restrictions for spatial increments Δx' or the time Δt'.                       
(i , j)  is used instead of (x , y) to be subscript for  variable,   
(i + 1) instead of (x +  Δx) and  instead of (i - 1), and                           
(x -  Δx) and by the same way (n)  represents the time                    
level (t) as shown in figure 3.

3. The downstream results
Figure 4 displays the local bulk temperature, θmx, versus 

x/De for Pe  =1000, 5000, 10000, 100000, 300000 and 
700000 to show the effect of the Peclet number on the local 
bulk temperature. As shown in the figure the rate of heat 
transfer at low Peclet number is very high and decreases 
as the Peclet number increases. Figure 5 displays the same 
results of local bulk temperature. All the graves coincided 
at figure 4 when the local bulk temperature versus                                
X*  = (x / De) / Pe .

Figure 6 displays the local Nusselt number versus                
(x/De)  for Pe =1000, 5000, 10000, 100000, 300000 and 
700000, respectively. The Peclet number effect is shown. 

(or)
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For one value of (x/De), Nux increases with increasing    Pe 
value. In the region of fully developed, the Nux tends to 
7.5407, in agree with Graetz problem where the effect of  
disappear. 

The same results which shown in figure 6 are displayed 
again in the figure 7 but versus (x/De) / Pe , to show that 
the curves do not coincide such as the case of neglecting 
the axial conduction.

Figure 8 displays the averaged bulk temperature 
versus x/De for Pe =1000, 5000, 10000, 100000, 300000 
and 700000, respectively. For each value of x/De,                               
the ̅θmxvalue becomes smaller as greater Pe value is, the 
smaller is. While at figure 9 all the curves coincided versus                                                   
(x/De) / Pe .

Figure 10 displays the results of the average Nusselt 
number versus x/De for Pe =1000, 5000, 10000, 100000, 
300000, and 700000, respectively. The effect of the Peclet 
number Pe , on the average value of Nusselt number is 
presented. For each value of x/De, the   ̅Nux value increases 
with increasing Pe . In the region of fully developed, the 
value of  ̅Nux approaches to 7.5407, in agree with Graetz 
problem where the effect of Pe disappear. 

Figure 11 displays the average Nusselt number versus 

x/De for Pe  for  Pe =1000, 5000, 10000, 100000, 300000, 
and 700000, respectively. The curves do not coincide such 
as in classical Graetz problem, to demonstrate the effect of 
the axial heat conduction on the heat transfer from the wall 
at the entrance.

The increase in Peclet number decreases the effect of 
the axial heat diffusion as shown in figures 12 and 13. 
Figure 12 displays axial heat conduction effect for three 
groups of Nusselt number versus x/De for Pe =500,1000 
and 5000. Including the axial heat conduction increases the 
local Nusselt number.

Figure 13 also show at high Peclet numbers the effect 
of axial heat conduction in three groups of Nusselt number 
versus x/De for Pe =500,1000,5000 and 10000, Including 
the axial heat conduction increases the local Nusselt 
number.

Figures 12 and 13 demonstrate that, first; the axial heat 
conduction increases the heat transfer to the wall increases 
at the entrance, second; with the increase of the Peclet 
number, the effect of axial heat conduction decreases. And 
finally, when Peclet number is larger than 1000, this effect 
of the axial diffusion term almost vanishes.

Fig. 1: The Graetz problem description

Fig. 2: Upstream diffusion outline



Saad & Asker 2024

24

Fig. 3: Notations for the discretization mesh

Fig. 4: The local bulk temperature θmx versus x/De for T-problem with axial diffusion term 

Fig. 5:The local bulk temperature θmx versus (x/De)/Pe for T-problem with axial diffusion term 
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Fig. 6: The local value of Nusselt numberNux versus x/De for T-problem with axial diffusion term 

Fig. 7: The local value of Nusselt number Nux versus (x/De)/Pe for T-problem with axial diffusion term

Fig. 8: The averaged bulk temperature θ m̅x versus x/De for T-problem with axial diffusion term
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Fig. 9: The averaged bulk temperature θ m̅x versus (x/De)/Pe for T-problem with axial diffusion

Fig. 10: The averaged value of Nusselt number Nu x̅ versus x/De for T-problem with axial diffusion term 

Fig. 11: The averaged Nusselt number Nu ̅x versus (x/De) / Pe for T-problem with axial diffusion
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Fig. 12: Effect of axial heat conduction for T-problem with axial diffusion term at low Pe numbers.

Fig. 13: Effect of axial heat conduction for T-problem with axial diffusion term at high Pe numbers (log-log scale)

4. Thermal entry length
A fully developed heat flow between two infinite 

parallel plates can be considered in the following situation. 
If the plates are held at constant wall temperature, such in 
the journal bearings, then the bulk temperature of the fluid 
increases steadily at a fixed rate along the flow direction. 
The fully developed heat flow at a distance away from 
the fluid entrance is achieved, when the fluid heat transfer 
coefficient, h , be constant h = (λ / De) * Nux , as well as the 
temperature profile along the flow is the same shape. The 
definition of this distance is called the thermal entry length 
or thermal entrance length. This distance is important in 
designing an efficient heat transfer system. For T-problem, 
the thermal entrance length is estimated based on the fully 
developed value of the local Nusselt number. In this case 
the thermal entrance length is calculated at the distance 

from the entry to the point at which the following relation 
is accomplished.

(21)

Where 7.5407 is the local Nusselt number for the 
T-problem (flow between parallel plates) when the heat 
flow is fully developed. Figure 12 displays the thermal 
entry length versus the Pe  value, The thermal entry length 
can be calculated analytical using the following proposed 
empirical correlation:

(22)

Equation 21 gives a good agreement with the results 
obtained numerically for the T-problem with axial diffusion 
term, the maximum error for this equation is 0.5%.



Saad & Asker 2024

28

5. The stability analysis for the proposed scheme
The Fourier expansion is:

(22)

(23)

Then  and   in equation (23);

(24)

The numerical solution will be bounded as   and  , 
according to the test of Von-Neumann, if the amplification 
factor  is bounded, which need

Where un  is

(25)

Considering the following parameters to simplify 
equation (25);

(26)

Then the un is given by;

(27)

The absolute magnitude of un is

(28)

To get the maximum value of un, differentiate the 
right-hand side of equation (28) with respect to (γΔx) as 
following.

(29)

Where:

(30)

Substitution at equation (29) the final result is:

(31)

Equation (31) shows that un  is minimum or maximum if;

(32)

The first condition makes | un | ≤ 1, but the second 
condition makes | un | ≤ 1 if v ˃ 0 but if v ˂ 0  provided that 
Δx ˂ 2/ (Re * Umax) .

(33)

Then the scheme is stable.

(34)
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According to the result tabulated in table 1, for Barakat 
RW convection term, the backward representation is 
suitable for the positive u-velocity only as represented from 
the above conditions, while for the negative u-velocity                                                                                     
Δx < 2 / Re * Umax should be satisfied. Also,                                                                 

y same way for negative velocity, when using Barakat 
RW the convection term by the forward representation 
it is unconditionally stable for negative u-velocity, 
while for positive u-velocity Δx < 2 / Re * Umax should                                                                                              
be satisfied.

Table 1: T-problem with axial diffusion term for positive and negative velocity

θm with (-u)θ ̅m with (+u)θm with (-u)θm with (+u)(x/De) Pe

00000
0.0258640.0258640.0445790.0445790.0005
0.0887390.0887390.1479410.1479410.003
0.1404690.1404690.2329690.2329690.006
0.1696890.1696890.2808850.2808850.008
0.1963490.1963490.3244740.3244740.01

0.22110.22110.3647510.3647510.012
0.2328890.2328890.3838350.3838350.013
0.2443330.2443330.4022850.4022850.014
0.2554620.2554620.4201390.4201390.015
0.2662970.2662970.4374280.4374280.016
0.2768590.2768590.4541790.4541790.017
0.2871630.2871630.4704150.4704150.018
0.2972240.2972240.4861580.4861580.019

0.3070550.3070550.5014240.5014240.02

6. Conclusion
The proposed numerical method extends Barakat-

Clark (ADE) method to solve the transport equation 
which represents the rightward method. The unsteady term 
presented using two-time level derivative at n and n+1 
combined with backward derivative i and i-1. As a sample 
of the transport equation, the heat equation is considered 
in unsteady form. The heat equation contains the unsteady 
term and the axial heat term. The heat transfers within flow 
between two parallel plates. The equation is transformed 
into dimensionless form, the results for different 
dimensionless numbers are presented, and the results show 
the following:

- The local bulk temperature shows rapid change at low 
Peclet numbers (<1000) and as the Peclet number increases 
the change of the temperature became slow. 

- The proposed numerical method presented rapid and 
stable solutions at high Peclet numbers (up to Pe=70000)

- The proposed method presented a stable and rapid 
solution for the local Nusselt number and shows Nusselt 
number variation at different values of Peclet numbers. 

- The solution for averaged values of bulk temperature 
and the averaged values of Nusselt number shows good 
agreement with the Graetz problem.

- The results demonstrated that, in the fully developed 
region, the values of Pe  has no effect on Nusselt number.

- The second order term ծ2T/ծx2 is of an important 
order magnitude in the entrance, or the developing region 
only. It is of unimportant order of magnitude in the region 
of fully developed flow.

- The thermal entrance length is presented graphically, 
and an empirical correlation is induced.

- The stability analysis shows that the proposed scheme 
is unconditionally stable.
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