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Abstract
The heat transport equation for laminar flow between isothermal
K . parallel-plate channels in the entrance region is solved numerically. The
eywords:

heat transport equation is solved using the rightward representation of
Convection heat transfer, downstream diffusion, | - Barakat-Clark ADE method. The proposed numerical method uses the
parallel plates, Nusselt number. two-time levels derivative to solve the unsteady term in the transport
equation. The unsteady term presented using two-time level derivative
at n and n+1 combined with backward derivative i and i-1. The heat
equation contains the unsteady term and the axial heat term. The heat
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1. INTRODUCTION

Gratz-Nusselt problem is a well-known problem as a
T-problem where the flow is fully developed and uniform
temperature at the inlet. This case exists in the heat
exchangers of finite length with good mixing in the headers
at the inlet and outlet.

For the fluid heating (7, > T, ) where T, is “wall
temperature”, the effect of fluid axial conduction should
be included in the study to avoid the error of calculations.
While heating, part of the heat is transferred from the
walls raising the local enthalpy, and the rest is consumed
in heating the incoming fluid at the header's inlet
(-0 <x < 0) by conduction. Preheating the upstream fluid
affect the temperature distribution at the inlet condition
at x = 0, the inlet temperature will not be uniform while
including the fluid axial conduction. So neglecting the fluid
axial conduction may cause calculation error especially at
low Peclet numbers.

The upstream and downstream regions of the
flow between parallel plates are solved using a
series-solution!!. The study included fluid axial conduction.
The solution presents a good approach long away from
the entrance due to the difficulties in evaluating the eigen
values. While near the entrance the solution fails (smallest
values of axial distance). Allem’s scheme is then applied™
considered the steady-state energy equation downstream
considering the fluid axial conduction. The presented

results deviate from Great solution®® for X* = (x/De)/Pe <
0.0025 with deviation up to 25 %. Good agreement with
Graetz solution for X" = (x/De)/Pe > 0.0025. The results
of both the local bulk temperature and the local Nusselt
number presented graphically for Pe‘Peclet” numbers up
to 106.

The problem is solved again® using a closed-form
using a Second-, Third-, and Fourth-order polynomial
for the temperature and Nusselt number. The third-order
polynomial presented the lowest deviation from the exact
solution. However, the calculations at small  still very
difficult when the fluid axial diffusion is considered. In
1973, they presented™ the same problem in considering the
effects of the upstream and the downstream conditions on
the heat transfer with the fluid axial conduction.

The solution extended to regions (-co < x < o0) using
the central finite-difference!® to solve the steady-state
energy equation. He stated that the effect of the axial
conduction cannot be formulated by simply adding the
axial conduction term to the energy equation while using
a semi-infinite duct with uniform inlet temperature. Also,
the axial conduction effect is more pronounced in the case
of constant wall temperature, and the axial effect may be
neglected for Pe > 50 . The study mentioned that the fluid
axial conduction can cause a considerable increase in the
thermal developing length. An exact solution presented!”!
to show the temperature distribution, the velocity profiles,
and the local Nusselt number for slug flow and for both
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upstream and downstream regions. The results found
that the heat transfer characteristics are sensitive for Biot
number and Peclet number in the thermal entrance region.

The ADI method™ demonstrated the convergence by
definite error and the results presented the local Nusselt
number for X" < 0.0025 [ref, table 7, 8]. Also, it presented
the thermal entry length for Peclet number up to 1000.
Then considered™ the forced convection in a parallel plate
channel filled with a saturated porous medium to present
modified Greatz methodology considering the fluid axial
conduction, and viscous dissipation. The solution presented
dimensionless expressions for the local Nusselt number
as a function of the dimensional longitudinal coordinate
and other parameters (Darcy number, Peclet number,
Brinkman number). A numerical study for asymmetric
heating!'” stated that the Nusselt number is independent
of the asymmetry if and only if the velocity profile is
symmetric with respect to the midline of the channel. The
axial heat conduction in parallel flow microchannel heat
exchanger!'! mentioned that increasing the Reynolds
number Re and thermal conductivity K leads to an increase
in the axial heat conduction while increasing hydraulic
diameter D, and channel volume leads to a decrease in the
axial heat conduction.

The $tudy" considered constant wall temperature
considering axial conduction. The results showed that
considering the axial conduction increases the local
Nusselt number Nu . Considering the fluid axial conduction
increases the heat transfers to the wall and this effect
decreases obviously as Peclet number increases. The axial
effect!®! within micro-channels the local Nusselt number at
infinity is Nu_for constant temperature for flow between
two parallel plates. The study presented a derived correlation

aT aT

—tuUu—=a

dt dx

Where & is the “thermal diffusivity”, 1is the velocity
component, the schematic of the flow is shown in Fig.

for the Nusselt number. A mathematical approach' is used
to evaluate the effect of flow maldistribution in a parallel
plate-fin heat exchanger. Another numerical study!* on the
motion of a magnetorheological fluid under the application
of a magnetic external filed in modifying the velocity
profile and the pressure drop along the channel show good
results.

The instability of pure Newtonian fluid flow between
two parallel plates!'®, where the bottom one coated with
various porous media with permeability and porosity is
investigated. A numerical solution!'”! analyzed numerically
the fully developed laminar flow of the Cross fluid between
parallel plates under uniform heat flux. Fredrik and
Trygve '8 presented an experimental and numerical study
for the hydrodynamic loads on two-dimensional perforated
plates.

In this paper, the numerical solution extends the
rightward representation oft'”"! method to present a result
of the developed flow in the entrance region of parallel
plates, and laminar forced convection as shown in figure 1
and 2. The flow is fully developed, and the walls are held
at constant temperature. The problem will be introduced
into cases; the first one assuming uniform inlet temperature
at X = 0 presenting the results downstream the flow, the
second, assuming the temperature to be constant at x = -co.
The results will show the effect of the upstream on the inlet
temperature at X = 0, also the results for downstream the
flow 0 < X < oo will be shown. The stability analysis for the
proposed method is detailed in??".

1. Analysis and governing equations

The heat transfer is presented as follow:

a’T  acr (1)
_+ —
dx?  dy?

1.The boundary conditions are;

aT
T(0,v,t)=T,, T(eo,y,0)=T,, a (x,0,7)=0,T(x,+y,,0)=T,, T(x,y,0) =T, )

Where and are“the upstream temperature and the wall
temperature”, respectively.

T-T, D 4 ¥ x
= — = & _—
T, T, °°¢ Yo De

Where  and are the characteristic velocity and the
effective diameter. is non-dimensional time X, Y are non-

% 0 _ 1
ot X Pe

The non-dimensional parameters are;

v w U, 3
Y=22, U=, 1=_2+t @
U, "~ De

dimensional locations. the heat transfer equation in non-
dimensional form is

2’8 926
axz T ay? “
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The fully developed flow considering ,so the parabolic
form of the velocity is:

U=15(1-(/y0)%) )

The local value of bulk temperature is:

The average value bulk temperature is:

1 X
B_m.r = _J‘ 1'E'Jm.r dX ®
X 0

The average value of the Nusselt number, ﬂx , 18

— :'_I_I.De

) N, = ! f 9)
J- Yol ?HU dY (6) - A m'c) a}" ¥= 025
O =—5——
e f YolDe 1y iy 2. The proposed Scheme
The local Nussel ber N The first order of time derivative df/ dt and the second-
¢ local Nusselt number N, is order derivatives d°f/ dx?, 0°f/ 0y’ and d%f / 9z are done
using two-time level derivative as follow:
h.c De =1 a6 n+l n
Nu. = X% _ i @) fijxe _ Tuje — Fij (10)
* A 1— Oy aY ¥=0.25 dat At +0(at)
2¢n n n n+l _ gentl
O fline  (Fhijw — fia) — (F5% — fil)x 10 (B8 Ay (1)
dx? Ax? Ax’
2 n n+l n+l 12
fiix (f5 Lj+Lk — ) (fz -1k | o (E ﬂyz) (12
dy? Ay? Ay’
2rn n n n+1
O fiie _ (fijaerr — filiae) — (Fijie — s +0 (E ﬁzz) (13)
dz? Az? Az’
Also df'/ dx, df / dy and 9Jf / dz using the two-time-level 3 n+1
backward or forward differences as follow; f ijk Jﬂ J+1k T Jijk w<0 (19)
0z Az

d jfj'.k _ uk fxnﬁk u>0 (14
dx Ax
a no_ gn+l
1;1{ _ ijk ij—1k v=0 (15)
ady Ay
+1
d iﬁ,k _ JﬂJ}k - J'T_Ir'.k—l w>0 (16)
0z Az
(or)
+1
Ak f1+l_:k ik u<0 (7
dx Ax
1
d :'J.I;,k B {'::i'+1,k - f:r;tr v<0 (18
dy Ay

The scheme is stable under any condition®”. No
restrictions for spatial increments Ax’ or the time Af'.
(i,J) is used instead of (x, y) to be subscript for variable,
(i + 1) instead of (x + 4x) and instead of (7 - /), and
(x - 4x) and by the same way (n) represents the time
level () as shown in figure 3.

3. The downstream results

Figure 4 displays the local bulk temperature, 0, versus
x/De for Pe =1000, 5000, 10000, 100000, 300000 and
700000 to show the effect of the Peclet number on the local
bulk temperature. As shown in the figure the rate of heat
transfer at low Peclet number is very high and decreases
as the Peclet number increases. Figure 5 displays the same
results of local bulk temperature. All the graves coincided
at figure 4 when the local bulk temperature versus
X" =(x/De)/Pe.

Figure 6 displays the local Nusselt number versus
(x/De) for Pe =1000, 5000, 10000, 100000, 300000 and
700000, respectively. The Peclet number effect is shown.
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For one value of (x/De), Nux increases with increasing Pe
value. In the region of fully developed, the Nux tends to
7.5407, in agree with Graetz problem where the effect of
disappear.

The same results which shown in figure 6 are displayed
again in the figure 7 but versus (x/De) / Pe , to show that
the curves do not coincide such as the case of neglecting
the axial conduction.

Figure 8 displays the averaged bulk temperature
versus x/De for Pe =1000, 5000, 10000, 100000, 300000
and 700000, respectively. For each value of x/De,
the 0 value becomes smaller as greater Pe value is, the
smaller is. While at figure 9 all the curves coincided versus
(x/De) / Pe .

Figure 10 displays the results of the average Nusselt
number versus x/De for Pe =1000, 5000, 10000, 100000,
300000, and 700000, respectively. The effect of the Peclet
number Pe , on the average value of Nusselt number is
presented. For each value of x/De, the Nux value increases
with increasing Pe . In the region of fully developed, the
value of Nux approaches to 7.5407, in agree with Graetz
problem where the effect of Pe disappear.

Figure 11 displays the average Nusselt number versus

y Hydrodynamic entrance length

x/De for Pe for Pe=1000, 5000, 10000, 100000, 300000,
and 700000, respectively. The curves do not coincide such
as in classical Graetz problem, to demonstrate the effect of
the axial heat conduction on the heat transfer from the wall
at the entrance.

The increase in Peclet number decreases the effect of
the axial heat diffusion as shown in figures 12 and 13.
Figure 12 displays axial heat conduction effect for three
groups of Nusselt number versus x/De for Pe =500,1000
and 5000. Including the axial heat conduction increases the
local Nusselt number.

Figure 13 also show at high Peclet numbers the effect
of axial heat conduction in three groups of Nusselt number
versus x/De for Pe =500,1000,5000 and 10000, Including
the axial heat conduction increases the local Nusselt
number.

Figures 12 and 13 demonstrate that, first; the axial heat
conduction increases the heat transfer to the wall increases
at the entrance, second; with the increase of the Peclet
number, the effect of axial heat conduction decreases. And
finally, when Peclet number is larger than 1000, this effect
of the axial diffusion term almost vanishes.
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Fig. 1: The Graetz problem description
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Fig. 2: Upstream diffusion outline
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Fig. 3: Notations for the discretization mesh
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4. Thermal entry length

A fully developed heat flow between two infinite
parallel plates can be considered in the following situation.
If the plates are held at constant wall temperature, such in
the journal bearings, then the bulk temperature of the fluid
increases steadily at a fixed rate along the flow direction.
The fully developed heat flow at a distance away from
the fluid entrance is achieved, when the fluid heat transfer
coefficient, /1, be constant & = (4/De) * Nu_, as well as the
temperature profile along the flow is the same shape. The
definition of this distance is called the thermal entry length
or thermal entrance length. This distance is important in
designing an efficient heat transfer system. For T-problem,
the thermal entrance length is estimated based on the fully
developed value of the local Nusselt number. In this case
the thermal entrance length is calculated at the distance

from the entry to the point at which the following relation
is accomplished.

21

Where 7.5407 is the local Nusselt number for the
T-problem (flow between parallel plates) when the heat
flow is fully developed. Figure 12 displays the thermal
entry length versus the Pe value, The thermal entry length
can be calculated analytical using the following proposed
empirical correlation:

X = 1.704 * Exp(Pe™1%3%) — 169 (22)

Equation 21 gives a good agreement with the results
obtained numerically for the T-problem with axial diffusion
term, the maximum error for this equation is 0.5%.
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5. The stability analysis for the proposed scheme

The Fourier expansion is:

i cAt ae (UAE  cAt n UAt  cAt . [CAt
0 (1 ) =0 (e ) =10 (1 2~ ) 04 aa)

Ax? Ax  Ax?

Then ¢{"*! and ¢n  in equation (23);

Ax? Ax | Ax?

f'={"e" = {"(cosyx +isinyx)  (22)

1

Ax  Ax? Ax? (23)

Ax  Ax? Ax?

{n+1 (1 + ﬂ) _ <J|+l (Uﬂt + Cﬂ't)e—ir&r — gn (1 _ %‘— _ ﬂ) + qn (C_m)eirﬁx (24)

The numerical solution will be bounded as and ,
according to the test of Von-Neumann, if the amplification
factor is bounded, which need

max|u"| = 1
Where u" is
- _UAt  cAt ALY ipax
N S (- —ae2) * (52)e

T ()G

(25)

)e—ir&x

The absolute magnitude of u" is

(1-r—v)?>+r?4+2(1—r—v)rcosyAx

Considering the following parameters to simplify
equation (25);

|,U"|2 —

To get the maximum value of ", differentiate the
right-hand side of equation (28) with respect to (yAx) as
following.

a|.“"|2 _ (3%)8 a (B%)A -0 (29)
dyAx B?
Where:
% =2(1 +r)(r + v) sinyAx
oA = —2r(1 —r —v)sinyAx G0
dy Ax

Substitution at equation (29) the final result is:

[((2r + v)(1 — v)?]sinyAx =0 (31)

Equation (31) shows that " is minimum or maximum if;

3- Zr+v=1-v=-2r

n|z —

T A4+ (r+v)2-2(1 +r)(r + v) cosyAx

(1=r+2r2+r?2+2(1 —r+ 2r)rcosydx

UAt cAt
_vat et 26
v A and r Ax? (26)

Then the u” is given by;
L (1—-v—r)+ (r)e"f"“ 27
(14+7r)— (v+r)eirdx
A

= (28)

1- sinyAx =0 - cosyAx=+1
1.1-  cosyAx = 1 then [p"|? =1
1.2- cosydx = -1 (32)
1—4r—2v+4r?+4rv+v°

lu"? =
14+ 4r +2v 4+ 42 + 4rv + v?

The first condition makes | »"| < 1, but the second
condition makes | #"| < 1 if v> 0 butif v <0 provided that
Ax<2/(Re* U, ).

2 (33)

Then the scheme is stable.

(34

|

A+ 4+ (r—2r)2-2(1+7r)(r+ 2r) cosyAx
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According to the result tabulated in table 1, for Barakat
RW convection term, the backward representation is
suitable for the positive u-velocity only as represented from
the above conditions, while for the negative u-velocity
Ax < 2 / Re * U _should be satisfied. Also,

y same way for negative velocity, when using Barakat
RW the convection term by the forward representation
it is unconditionally stable for negative u-velocity,
while for positive u-velocity Ax < 2/ Re * U, should
be satisfied.

Table 1: T-problem with axial diffusion term for positive and negative velocity

(x/De) Pe 0, with (+u) 0, with (-u) 0, with (+u) 0, with (-u)
0 0 0 0 0
0.0005 0.044579 0.044579 0.025864 0.025864
0.003 0.147941 0.147941 0.088739 0.088739
0.006 0.232969 0.232969 0.140469 0.140469
0.008 0.280885 0.280885 0.169689 0.169689
0.01 0.324474 0.324474 0.196349 0.196349
0.012 0.364751 0.364751 0.2211 0.2211
0.013 0.383835 0.383835 0.232889 0.232889
0.014 0.402285 0.402285 0.244333 0.244333
0.015 0.420139 0.420139 0.255462 0.255462
0.016 0.437428 0.437428 0.266297 0.266297
0.017 0.454179 0.454179 0.276859 0.276859
0.018 0.470415 0.470415 0.287163 0.287163
0.019 0.486158 0.486158 0.297224 0.297224
0.02 0.501424 0.501424 0.307055 0.307055

6. CONCLUSION

The proposed numerical method extends Barakat-
Clark (ADE) method to solve the transport equation
which represents the rightward method. The unsteady term
presented using two-time level derivative at n and n+1
combined with backward derivative i and i-1. As a sample
of the transport equation, the heat equation is considered
in unsteady form. The heat equation contains the unsteady
term and the axial heat term. The heat transfers within flow
between two parallel plates. The equation is transformed
into dimensionless form, the results for different
dimensionless numbers are presented, and the results show
the following:

- The local bulk temperature shows rapid change at low
Peclet numbers (<1000) and as the Peclet number increases
the change of the temperature became slow.

- The proposed numerical method presented rapid and
stable solutions at high Peclet numbers (up to Pe=70000)

- The proposed method presented a stable and rapid
solution for the local Nusselt number and shows Nusselt
number variation at different values of Peclet numbers.

- The solution for averaged values of bulk temperature
and the averaged values of Nusselt number shows good
agreement with the Graetz problem.

- The results demonstrated that, in the fully developed
region, the values of Pe has no effect on Nusselt number.

- The second order term 0°T/0x, is of an important
order magnitude in the entrance, or the developing region
only. It is of unimportant order of magnitude in the region
of fully developed flow.

- The thermal entrance length is presented graphically,
and an empirical correlation is induced.

- The stability analysis shows that the proposed scheme
is unconditionally stable.
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Momenclature

c Arbitrary coefficient [-]

Li/kg. K]
dx,dy Spatial mesh size [m]
De  Effective diameter [m]
f Dependent variable [-]
L Characteristic length [m]

n Constant [-]

Nux Local Nusselt number [-]
Nux Averaged Nusselt pumber [-]
Pe  Peclet mumber [-]

Fr  Prandtl munber [-]

Re  Revnold's number [-]

T Temperaturs [K]

T, Entering stream temperature [K]
Iy Wall temperature [K]

t Time [5]

w, .1 Velocity components [m /=]

Specific heat at constant pressure

) Dimensionless x- component of veloeity
[m/s]

U, characteristic velocity: upstream veloeity
[m/s]

Yo  Gap height[m]

x,¥.: Spatial location [m]

A Difference

o Thermal diffusivity [m?/s]

f Dimensionless temperature [-]

6,,, Local Bulk temperature [-]

g, Averaged bulk temperature [-]e

[T Kinematic viscosity [m® /5]

T Dumensionless time [-]

Superseripts

n trial number

subscripts

i, f, & counters
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